

Minimising Energy in Construction

Dr John Orr MEng (hons) PhD CEng MIStructE FHEA University Lecturer in Engineering University of Cambridge Fellow of Magdalene College

Introduction

Introduction

Thirion, C., Putting the material in the right place, 2012, UCL, London; Moynihan, M. Utilization of structural steel in buildings. Proc. R. Soc. A, 2014.

Introduction

UNEIEA Global Status Report 2017

- Engineering and Physical Sciences Research Council (EPSRC)
 - Funding under "Feasibility Studies in Energy Research 2017"
 - £250k, two years, led by University of Cambridge
- Long-term vision:
 - Our long-term vision is for the built environment to be designed cost-effectively, based on whole life cycle energy consumption using minimum material resource for appropriate performance.
- Immediate ambition
 - To use feasibility studies to identify and address sources of wasted embodied energy, value-less cost, and performance over-design in the construction industry to transform sector wide design practice and define the research areas that will underpin this transformation

"examine current culture and practice in structural engineering design as it relates to embodied energy"

- 36 question anonymous online survey
- Questions in seven sections:
 - 1) General; 2) Loading; 3) Serviceability; 4) Design; 5) Capacity; 6) Design Examples;
 7) Population
- 129 submissions between August-October 2017
 - Taking a 95% confidence level, we have a margin of error of ±8.65%, making no assumptions about the skew of responses (the worst case).
 - Sample size doesn't need to be very large (if the population is c.>20,000 people)

- Full details of all questions and their responses
- Presents survey results **plus** lots of new questions

www.meicon.net/survey2018

 Accompanying academic journal paper in Resources, Conservation and Recycling, vol.140, <u>https://doi.org/10.1016/j.resconrec.2018.09.015</u>

Population

- 89% structural engineers, 74% UK, 84% male
- 26% graduates, 25% senior engineers, 16% director, 11% associates
- 38% concept design, 45% detailed design
- Average 16 years experience

Q8: My clients or design team normally require me to minimise total embodied energy

Q9: The material utilisation of a structural design is normally presented to clients

Q11: Clients normally insist on low-carbon structural designs

Scoring 1,	2, or 3 = ⁻	70%			
				15% Neutral	
Scoring 1,	2, or 3 = ⁻	71%			
				12% Neutral	
Scoring 1,	2, or 3 = ⁻	70%			
				19% Neutral	
0% 20%	% 40)%	60%	80%	100%
Never	2 3	■ 4	5	6 ∎Alway	'S

Scoring 5, 6, or 7 = 82% Q4: An easily constructed structure is more valued 12% by the whole design team than a materially efficient Neutra structure Scoring 5, 6, or 7 = 60% Q6: The potential for construction errors influences 16% my structural member sizing decisions Neutral Scoring 5, 6, or 7 = 95% 4% Q7: I simplify my structural designs to improve constructibility eutra 0% 20% 40% 60% 80% ■ Strongly Disagree ■ 2 ■ 3 ■ 4 ■ 5 ■ 6 ■ Strongly Agree

100%

Flickr CC BY 2.0 <u>http://bit.ly/2zbsRcr</u> Steve Jurvetson. Photo has been cropped to fit slide.

RQ1: How do we align the incentives of clients, architects, engineers, legislators, and contractors such that minimum embodied energy structures are the preferred outcome on all projects?

IQ1: Could we collectively define benchmark structural utilisation values against which new structural designs could be compared, to drive material efficiency?

IQ2: How might a calculation of material use per m² best be presented to clients, to drive material efficiency?

IQ3: How might designers demonstrate they are contributing to meeting Construction 2025 targets?

MEICON: Serviceability

Pathways

IPCC Special Report, Global Warming of 1.5°C, http://www.ipcc.ch/report/sr15/

firmitatis, utilitatis, venustatis

Vitruvius, De architectura, Book 1, Chapter 3. 30BC

