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The big picture
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The energy budget
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The energy budget
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Process emissions — steel and cement scaled by CO2
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Decisions, decisions. . .

Overall layout

Grid spacing

floor heights

Serviceability

Loads

Type of frame

Type of decking

. . .

Thickness of the concrete

Decking type Column spacing

Foundations

Beams and columns



Value, Costs, Programmes

Developers value flexible space

Architects look at function and æstethics

General contractors will take the project and coordinate actors

Structural designers look at structural solutions and construction details

Other contractors will finish the details and do the actual construction

As you go down that list, consideration of value gives place to consideration

of costs



Coordination — steel reuse as an example
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Material Utilisation in Construction

Material Utilisation in Construction

1. MC Moynihan, JM Allwood — Proceedings of the Royal Society A, 2014

2. CF Dunant et al. — Resources Conservation and Recycling, 2018

3. W Shanks et al.— Resources Conservation and Recycling, 2019



Where cement (and steel) goes
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Better concrete?

Concrete strength depends on
1. Cement composition
2. Water/cement Ratio
3. Aggregate PSD
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Steel Utilisation

Drop-off for UR > 0.8

Long tail suggests
important role of spans

Cores/Trimmers/Ties?
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The optimisation process

Preliminary Tender Construction
 

Secondary Primary Core/Trimmer/Tie

Model
No further optimisation after tender has been won



Options for material saving
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Optimising construction only a partial solution
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Design is the first thing to improve

Cement is a modern material,
still not used optimally

Substitution on a large-scale
would need a transformation
of the supply chain

Better design can bring gains
immediately

Optimised construction

7.3 %
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Choosing a grid

Carbon (kg CO2 /m 2 )
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Grid choice can double carbon for only 30% more cost



Optimisation and complex layouts
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Optimisation and complex layouts
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Choosing the decking

Deckings are not optimal (it’s the best you can do, picking 1 of 2000 options)

The carbon impact is similar to the choice of the grid

The choice is made early and typically not revised.
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Better buildings design?
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Where is the scope to improve design performance?

5-10% of extra embodied carbon due to under-optimisation

25% of extra embodied carbon due to poor initial decking choice

15% of extra embodied carbon due to the layout

The same things are likely true for initial massing choices

Poor planning/craftsmanship causes the same thing in cement mix design

22
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Thank you

Special thanks to:

And to all the Use Less Group and Resource Efficiency Collective


