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BUILDING LIFE CYCLE INFORMATION
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Dynamic life cycle assessment

* Dynamic climate model using impulse functions:

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution
of Working Group | to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.

Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M.

Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom

and New York, NY, USA, 1535 pp

e Easilyimplemented
using an open-source
excel tool:

Cooper, S., 2020. Temporal
Climate Impacts. Bath:
University of Bath Research
Data Archive. Available from:
https://doi.org/10.15125/BAT
H-00923.
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Approaches to sequestration

The ‘lumped” approach models an instantaneous removal of carbon from the atmosphere

Forest carbon storage [tCO2e ha'1]
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Research Report

Understanding the carbon
and greenhouse gas balance
of forests in Britain

Adapted from:

J. Morison, R. Matthews, G. Miller, M.
Perks, T. Randle, E. Vanguelova, M. White,
and S. Yamulki. Understanding the carbon
and greenhouse gas balance of forests in
Britain. Research Report - Forestry
Commission, UK, (No.018), 2012.



Approaches to sequestration
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Comparison of sequestration
approaches

 The treatment of sequestration has a significant impact
on climate response

* Forward-looking approach recommended:

Starts at zero, and models carbon fluxes from a
climate perspective thereafter

Exposes production (A1-3) emissions

Encourages re-planting — consistent with sustainable
certification (e.g. FSC)

Encourages longer building life AND faster regrowth

Evidence shows a delay between increased timber
demand and forest storage:

Abt, Karen L., et al. "Effect of policies on pellet production
and forests in the US South: a technical document
supporting the Forest Service update of the 2010 RPA
Assessment." Gen. Tech. Rep. SRS-202, Asheville, NC: US
Department of Agriculture Forest Service, Southern
Research Station. 33 p. 202 (2014).

Cumulative CO2 flux [kg]

Lumped
--------- Backwards-looking
— — — - Forwards-looking




Concrete
Steel

Comparison of a concrete, steeland .« CO, mass in atmosphere [kg]

Timber
timber building 2 ,
1
e Comparative study published by BuroHappold and IStructk. o | | | | |
| 20 40 0 80 100 120
W\ Years
) Concrete %107 Radiative forcing [W/m?]
flat slab
4
Steel 5 /
composite
0 | | | | |
|
Timber 20 40 0 80 100 Vears 120
CLT & glulam frame 7 o . 2
4 %10 Integrated radiative forcing [W.year/m~]

* Initial (A1-5) emissions create large temperature changes and
dominate IRF

e Long-term temperature change is similar to Module A

e Climate-positive period of timber is prolonged by increased life ears
and/or quicker re-growth o107 Temperature change AT [°C]
10 /
0 | | | | | |
| 20 0 b 80 100 120

Years



Comparison of a concrete, steeland .« CO, mass in atmosphere [kg]
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Comparison of a concrete, steel and
timber building

e Comparative study published by BuroHappold and IStructE.
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* If nore-planting occurs, timber can have the largest long-term
Impact

* If timber end-of-life emissions are avoided, we could have a
climate-positive building in the long-term
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